(Z)-2,3-Di-chloro-1,4-bis-(4-chloro-phen-yl)but-2-ene-1,4-dione. - PDF Download Free (2024)

organic compounds Acta Crystallographica Section E

Experimental

Structure Reports Online

Crystal data

ISSN 1600-5368

(Z)-2,3-Dichloro-1,4-bis(4-chlorophenyl)but-2-ene-1,4-dione

˚3 V = 6493.1 (14) A Z = 16 Mo K radiation = 0.73 mm1 T = 273 K 0.37 0.28 0.20 mm

C16H8Cl4O2 Mr = 374.02 Orthorhombic, Aba2 ˚ a = 19.065 (2) A ˚ b = 28.668 (4) A ˚ c = 11.8800 (14) A

Data collection

Ram K. Tittal,a*‡ Satish Kumarb and R. N. Rama a

Department of Chemistry, Indian Institute of Technology Delhi, Hauzkhas, New Delhi 110 016, India, and bDepartment of Chemistry, St. Stephen’s College, University Enclave, Delhi 110 007, India Correspondence e-mail: [emailprotected] Received 9 June 2014; accepted 2 July 2014 Edited by L. Farrugia, University of Glasgow, Scotland ˚; Key indicators: single-crystal X-ray study; T = 273 K; mean (C–C) = 0.007 A R factor = 0.065; wR factor = 0.145; data-to-parameter ratio = 15.2.

The title compound, C16H8Cl4O2, crystallizes with two independent molecules in the asymmetric unit. Both molecules have a Z conformation around the central double bond and they show significantly different C—C—C—O torsion angles between the aromatic ring and the carbonyl group [30.1 (7) and 3.9 (7) in one molecule and 23.5 (7) and 9.3 (8) in the other]. The crystal packing shows short halogen Cl O ˚ ] and Cl Cl [3.452 (2) A ˚ ] contacts [3.003 (5) and 3.246 (4) A and aromatic C—H Cl and C—H O interactions link the molecules, resulting in chains propogating along [100]. The crystal structure also features – stacking interactions between aromatic units of the two independent molecules, ˚. with a centroid–centroid distance of 3.9264 (6) A

Related literature For general background and details of the synthesis, see: Clark (2002); Martin et al. (1985); Matyjaszewski & Xia (2001); Ram & Charles (1999); Ram & Kumar (2008); Ram & Tittal (2014a,b); Ram & Manoj (2008); Ram & Meher (2003); Ram et al. (2007); Tomislav & Matyjaszewski (2008). For halogenbond interactions, see: Agarwal et al. (2014); Gonnade et al. (2008); Pedireddi et al. (1992). For short aromatic inteactions, see: Warad et al. (2013).

Bruker SMART APEX CCD detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2000) Tmin = 0.782, Tmax = 0.863

31827 measured reflections 6044 independent reflections 5194 reflections with I > 2(I) Rint = 0.068

Refinement R[F 2 > 2(F 2)] = 0.065 wR(F 2) = 0.145 S = 1.13 6044 reflections 397 parameters 1 restraint H-atom parameters constrained

˚ 3 max = 0.31 e A ˚ 3 min = 0.22 e A Absolute structure: Flack (1983), 1939 Friedel pairs Absolute structure parameter: 0.08 (7)

Table 1 ˚ , ). Hydrogen-bond geometry (A D—H A

D—H

H A

D A

D—H A

C2—H2 Cl7 C28—H28 Cl2 C3—H3 O1i C5—H5 O3ii C6—H6 O3ii C13—H13 O2iii C29—H29 Cl8iv

0.93 0.93 0.93 0.93 0.93 0.93 0.93

2.74 2.72 2.55 2.75 2.91 2.45 2.81

3.160 (5) 3.191 (5) 3.290 (6) 3.418 (6) 3.502 (6) 3.302 (7) 3.645 (5)

109 112 137 129 122 152 149

Symmetry codes: (i) x þ 12; y; z 12; (ii) x; y 12; z 12; (iii) x þ 12; y; z þ 12; (iv) x; y þ 12; z þ 32.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008) and SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010), PLATON (Spek, 2009) and SHELXTL.

The authors are thankful to Shailesh Upreti for providing assistance in solving the crystal structure. Supporting information for this paper is available from the IUCr electronic archives (Reference: FJ2678).

References

‡ Present Address: Department of Chemistry, National Institute of Technology, Kurukshetra, Haryana 136 119, India. Acta Cryst. (2014). E70, o861–o862

Agarwal, P., Mishra, P., Gupta, N., Neelam,, Sahoo, P. & Kumar, S. (2014). Acta Cryst. E70, o418. Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Clark, A. J. (2002). Chem. Soc. Rev. 31, 1–11. Flack, H. D. (1983). Acta Cryst. A39, 876–881. Gonnade, R. G., Bhadbhade, M. M. & Shashidhar, M. S. (2008). CrystEngComm, 10, 288–296. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

doi:10.1107/S1600536814015463

Tittal et al.

o861

organic compounds Martin, P., Steiner, E., Streith, J., Winkler, T. & Bellus, D. (1985). Tetrahedron, 41, 4057–4078. Matyjaszewski, K. & Xia, J. (2001). Chem. Rev. 101, 2921–2990. Pedireddi, V. R., Sarma, J. A. R. P. & Desiraju, G. R. (1992). J. Chem. Soc. Perkin Trans. 2, pp. 311–320. Ram, R. N. & Charles, I. (1999). Chem. Commun. pp. 2267–2268. Ram, R. N. & Kumar, N. (2008). Tetrahedron Lett. 49, 799–802. Ram, R. N. & Manoj, T. P. (2008). J. Org. Chem. 73, 5633–5635. Ram, R. N. & Meher, N. K. (2003). Org. Lett. 5, 145–147. Ram, R. N. & Tittal, R. K. (2014a). Tetrahedron Lett. Submitted. http:// dx.doi.org/10.1016/j.tetlet.2014.06.008

o862

Tittal et al.

C16H8Cl4O2

Ram, R. N. & Tittal, R. K. (2014b). Tetrahedron Lett. Submitted. http:// dx.doi.org/10.1016/j.tetlet.2014.05.097 Ram, R. N., Tittal, R. K. & Upreti, S. (2007). Tetrahedron Lett. 48, 7994–7997. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Spek, A. L. (2009). Acta Cryst. D65, 148–155. Tomislav, P. T. & Matyjaszewski, K. (2008). Chem. Soc. Rev. 37, 1087–1097. Warad, I., Al-Noaimi, M., Haddad, S. F., Al-Demeri, Y. & Hammouti, B. (2013). Acta Cryst. E69, o1075. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Acta Cryst. (2014). E70, o861–o862

supporting information

supporting information Acta Cryst. (2014). E70, o861–o862

[doi:10.1107/S1600536814015463]

(Z)-2,3-Dichloro-1,4-bis(4-chlorophenyl)but-2-ene-1,4-dione Ram K. Tittal, Satish Kumar and R. N. Ram S1. Chemical context S2. Structural commentary Free radical reactions are intimately involved in the chemistry of trichloromethyl compounds. Generation of free radicals from trichloromethyl group by homolysis of a C—Cl bond is relatively easy. Free radicals can easily be generated by the action of UV-light, radical initiators or redox active metal salts or its complexes. Considerable amount of information is available in the literature on radical reactions involving trichloromethyl group containing compounds. For example, the radical generated by reaction of a trichloromethyl group substituted compound under non reducing condition with CuCl or its complexes with bpy or with other bi- or tridentate tertiary amine ligands readily undergo intermolecular (Martin et al., 1985) or intramolecular (Clark, 2002), (Ram & Kumar, 2008) addition/cyclization on to a suitably substituted carboncarbon double bond. The formation of mono-and/or di-reduction product are also reported under non reducing conditions along with cyclization products (Ram et al., 2007). Such radicals also acts as radical initiator in atom transfer radical polymerization reactions (Tomislav & Matyjaszewski, 2008), (Matyjaszewski & Xia , 2001). However, if the carboncarbon double bond in such radical centre is replaced by any weak or relatively better leaving group at the β-position of the radical centre, it underwent predominantly rearrangement and/or fragmentation by the intermediate formation of contact ion pair (Ram & Meher, 2003). It is worthwhile to mention that 2,2,2-trichloroethylalkyl ethers and trichloromethyl carbinols having no suitably located carbon-carbon double bond or a leaving group β-position to the trichloromethyl carbon underwent 1,2-H shift under similar conditions through the intermediacy of a copper-carbenoid species (Ram & Charles, 1999), (Ram & Manoj, 2008). In this context, we have decided to explore the behavior of the radicals derived from trichloromethyl compounds which neither contains any suitably located carbon-carbon double bond nor any leaving group or any hydrogen atom at the β-position of the radical centre so as to restrict the above transformations i.e. intermolecular or intramolecular addition; ATRP; rearrangement and/or fragmentation or 1,2-H shift. The major product obtained under such reaction conditions is reported here. The asymmetric unit (Fig. 1) consists of the two formula units of the compound. Each formula unit adopts Z conformation about the C=C bond: C8=C9 and C24=C25. The aromatic ring of two units are nearly coplanar with a dihedral angle of 12.73° (C12—C15—C21—C18). A centroid to centroid distance of 3.9264 (6) Å between aromatic units of two independent molecules present in the asymmetric unit is observed indicating the presence of π–π stacking interactions (Fig. 1). The structure is stabilized by short intermolecular C—H···Cl [3.160 (5), 3.191 (5) and 3.645 (5)Å], C—H···O [3.290 (6), 3.418 (6), 3.502 (6) and 3.302 (7)Å] interactions [Warad et al. (2013)] (Fig. 2). In addition, the crystal packing also features short Cl···O {O2···Cl3 [3.003 (5)] Å and O4···Cl8 [3.246 (4) Å]} and Cl2···Cl6 [3.452 (2)Å] halogen bond interactions (Fig. 3) (Gonnade et al., 2008), (Pedireddi et al., 1992), Agarwal et al. (2014).

Acta Cryst. (2014). E70, o861–o862

sup-1

supporting information S3. Supramolecular features S4. Database survey S5. Synthesis and crystallization A two-neck round bottom flask fitted with a rubber septum was charged with CuCl (0.8 g, 0.008mol), 2,2′-bipyridine (1.25 g, 0.008 mol). Nitrogen was introduced into the flask followed by addition of 15 mL dry DCE or benzene into the flask to ensure the formation of the brown colored CuCl-bpy complex. To the reaction flask a solution of the 2,2,2-trichloro-1-(4-chloro-phenyl)-ethanone(0.004 mol) in dry DCE or benzene (5 mL) was added with the with the help of a syringe and the reaction mixture was heated to reflux with stirring under a slow and continuous flow of nitrogen. After the completion of the reaction as indicated by TLC (1-2 h), the reaction mixture was cooled and filtered through a celite pad. The filtrate was evaporated under reduced pressure on a rotary evaporator and purified by column chromatography using silica gel as the solid support. A solution of n-hexane and ethylacetate was used as the solvent for elution to get 1 in 52 or 60 % isolated yields in DCE or benzene respectively. Suitable crystals were obtained from chloroform/henxane. Melting point 110 °C. S6. Refinement Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms were placed at their ideal position with C—H = 0.93 A°.

Figure 1 The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms showing π-π stacking interactions.

Acta Cryst. (2014). E70, o861–o862

sup-2

supporting information

Figure 2 The packing diagram of the title compound showing short intermolecular halogen bond Cl···O interactions.

Figure 3 Structure of the title compound showing Cl···Cl, O···Cl, C—H···Cl and C—H···O interactions. (Z)-2,3-Dichloro-1,4-bis(4-chlorophenyl)but-2-ene-1,4-dione Crystal data C16H8Cl4O2 Mr = 374.02 Orthorhombic, Aba2 Hall symbol: A 2 -2ac a = 19.065 (2) Å b = 28.668 (4) Å Acta Cryst. (2014). E70, o861–o862

c = 11.8800 (14) Å V = 6493.1 (14) Å3 Z = 16 F(000) = 3008 Dx = 1.530 Mg m−3 Melting point: 383 K

sup-3

supporting information Mo Kα radiation, λ = 0.71073 Å Cell parameters from 5754 reflections θ = 3.2–26.1° µ = 0.73 mm−1

T = 273 K Block, colourless 0.37 × 0.28 × 0.20 mm

Data collection Bruker SMART APEX CCD detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2000) Tmin = 0.782, Tmax = 0.863

31827 measured reflections 6044 independent reflections 5194 reflections with I > 2σ(I) Rint = 0.068 θmax = 25.5°, θmin = 1.4° h = −23→23 k = −34→34 l = −14→14

Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.065 wR(F2) = 0.145 S = 1.13 6044 reflections 397 parameters 1 restraint Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained w = 1/[σ2(Fo2) + (0.0741P)2] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max < 0.001 Δρmax = 0.31 e Å−3 Δρmin = −0.22 e Å−3 Absolute structure: Flack (1983), 1939 Friedel pairs Absolute structure parameter: 0.08 (7)

Special details Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

C1 C2 H2 C3 H3 C4 C5 H5 C6 H6 C7

x

y

z

Uiso*/Ueq

0.1802 (2) 0.2138 (3) 0.2257 0.2296 (2) 0.2540 0.2091 (2) 0.1760 (2) 0.1631 0.1627 (2) 0.1418 0.1635 (2)

0.18216 (14) 0.18813 (16) 0.2180 0.15075 (16) 0.1549 0.10726 (15) 0.09998 (15) 0.0701 0.13761 (17) 0.1332 0.22072 (15)

0.0202 (4) −0.0820 (4) −0.1056 −0.1490 (4) −0.2160 −0.1158 (4) −0.0130 (4) 0.0094 0.0547 (4) 0.1246 0.0995 (4)

0.0441 (10) 0.0560 (12) 0.067* 0.0553 (12) 0.066* 0.0479 (11) 0.0491 (11) 0.059* 0.0493 (11) 0.059* 0.0458 (10)

Acta Cryst. (2014). E70, o861–o862

sup-4

supporting information C8 C9 C10 C11 C12 H12 C13 H13 C14 C15 H15 C16 H16 C17 C18 H18 C19 H19 C20 C21 H21 C22 H22 C23 C24 C25 C26 C27 C28 H28 C29 H29 C30 C31 H31 C32 H32 Cl1 Cl2 Cl3 Cl4 Cl5 Cl6 Cl7 Cl8 O1 O2 O3

0.1486 (3) 0.1600 (3) 0.1935 (3) 0.1455 (2) 0.1746 (3) 0.2231 0.1333 (3) 0.1531 0.0618 (3) 0.0316 (3) −0.0169 0.0730 (3) 0.0526 0.1304 (3) 0.1596 (3) 0.2072 0.1208 (3) 0.1416 0.0506 (3) 0.0195 (3) −0.0280 0.0595 (3) 0.0388 0.1738 (3) 0.1466 (3) 0.1170 (2) 0.1019 (2) 0.0991 (2) 0.1346 (2) 0.1594 0.1339 (3) 0.1595 0.0961 (3) 0.0593 (3) 0.0335 0.0614 (3) 0.0373 0.09338 (14) 0.08763 (8) 0.16115 (10) −0.00090 (11) 0.00905 (9) 0.14301 (12) 0.11250 (8) 0.22478 (7) 0.1630 (2) 0.2555 (2) 0.0931 (2)

Acta Cryst. (2014). E70, o861–o862

0.26865 (17) 0.30479 (17) 0.30333 (16) 0.30832 (14) 0.31256 (18) 0.3141 0.3145 (2) 0.3172 0.31252 (17) 0.30947 (19) 0.3092 0.30681 (17) 0.3040 0.45602 (16) 0.4566 (2) 0.4631 0.4480 (2) 0.4484 0.43870 (19) 0.43733 (19) 0.4306 0.44599 (18) 0.4451 0.46744 (16) 0.45532 (16) 0.48387 (16) 0.53398 (15) 0.57237 (16) 0.57170 (15) 0.5451 0.60992 (17) 0.6097 0.64784 (18) 0.64972 (18) 0.6761 0.61211 (17) 0.6131 0.69524 (6) 0.46534 (4) 0.39746 (4) 0.42888 (7) 0.31287 (6) 0.36143 (5) 0.27538 (5) 0.05907 (4) 0.21511 (12) 0.30041 (15) 0.54208 (12)

0.0565 (4) 0.1200 (5) 0.2379 (5) 0.3351 (4) 0.4422 (5) 0.4499 0.5364 (5) 0.6077 0.5223 (4) 0.4183 (5) 0.4113 0.3243 (5) 0.2535 0.5455 (4) 0.4390 (5) 0.4313 0.3454 (5) 0.2746 0.3565 (5) 0.4611 (5) 0.4682 0.5550 (5) 0.6259 0.6438 (4) 0.7593 (4) 0.8325 (4) 0.8002 (4) 0.8868 (4) 0.9873 (4) 1.0085 1.0567 (4) 1.1234 1.0281 (5) 0.9285 (6) 0.9097 0.8578 (4) 0.7897 1.11846 (19) 0.96328 (11) 0.79049 (14) 0.23804 (16) 0.64225 (14) 0.08012 (14) −0.07659 (12) −0.20286 (12) 0.1997 (3) 0.2467 (4) 0.7004 (3)

0.0520 (12) 0.0584 (13) 0.0543 (12) 0.0471 (11) 0.0612 (14) 0.073* 0.0653 (15) 0.078* 0.0595 (14) 0.0645 (14) 0.077* 0.0586 (13) 0.070* 0.0494 (11) 0.0661 (15) 0.079* 0.0743 (16) 0.089* 0.0653 (14) 0.0681 (15) 0.082* 0.0604 (13) 0.072* 0.0543 (12) 0.0552 (12) 0.0514 (12) 0.0462 (10) 0.0459 (11) 0.0466 (11) 0.056* 0.0584 (13) 0.070* 0.0671 (15) 0.0768 (17) 0.092* 0.0597 (13) 0.072* 0.1247 (8) 0.0696 (4) 0.0897 (5) 0.1048 (6) 0.0877 (5) 0.0981 (6) 0.0712 (4) 0.0635 (3) 0.0657 (10) 0.0835 (12) 0.0653 (9)

sup-5

supporting information O4

0.2329 (2)

0.48314 (14)

0.6368 (4)

0.0807 (12)

Atomic displacement parameters (Å2)

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26 C27 C28 C29 C30 C31 C32 Cl1 Cl2 Cl3 Cl4 Cl5 Cl6 Cl7 Cl8 O1 O2 O3

U11

U22

U33

U12

U13

U23

0.039 (2) 0.072 (3) 0.063 (3) 0.039 (2) 0.048 (3) 0.048 (3) 0.050 (3) 0.065 (3) 0.066 (3) 0.062 (3) 0.050 (3) 0.047 (3) 0.066 (4) 0.070 (3) 0.051 (3) 0.056 (3) 0.054 (3) 0.056 (3) 0.087 (4) 0.076 (4) 0.053 (3) 0.065 (3) 0.063 (3) 0.071 (3) 0.060 (3) 0.043 (2) 0.051 (3) 0.053 (3) 0.079 (3) 0.099 (4) 0.096 (4) 0.064 (3) 0.204 (2) 0.1076 (11) 0.1506 (14) 0.1133 (14) 0.0900 (10) 0.1784 (18) 0.0909 (10) 0.0727 (8) 0.101 (3) 0.056 (2) 0.095 (3)

0.040 (2) 0.038 (2) 0.051 (3) 0.049 (3) 0.039 (2) 0.054 (3) 0.043 (2) 0.044 (3) 0.044 (3) 0.037 (2) 0.037 (2) 0.068 (3) 0.075 (4) 0.052 (3) 0.082 (4) 0.067 (3) 0.041 (3) 0.075 (4) 0.085 (4) 0.062 (3) 0.069 (3) 0.064 (3) 0.043 (3) 0.039 (3) 0.048 (3) 0.048 (3) 0.049 (3) 0.045 (2) 0.053 (3) 0.046 (3) 0.048 (3) 0.051 (3) 0.0658 (10) 0.0476 (6) 0.0439 (7) 0.1214 (15) 0.1093 (13) 0.0426 (7) 0.0691 (8) 0.0537 (7) 0.052 (2) 0.114 (3) 0.055 (2)

0.053 (3) 0.059 (3) 0.052 (3) 0.056 (3) 0.061 (3) 0.045 (3) 0.044 (3) 0.047 (3) 0.065 (3) 0.063 (3) 0.055 (3) 0.069 (4) 0.054 (3) 0.056 (3) 0.061 (3) 0.053 (3) 0.052 (3) 0.067 (4) 0.051 (3) 0.058 (3) 0.082 (4) 0.053 (3) 0.058 (3) 0.055 (3) 0.047 (3) 0.047 (3) 0.038 (2) 0.041 (2) 0.043 (3) 0.057 (3) 0.086 (4) 0.064 (3) 0.1046 (15) 0.0537 (8) 0.0746 (10) 0.0795 (11) 0.0638 (9) 0.0734 (10) 0.0534 (7) 0.0641 (8) 0.044 (2) 0.080 (3) 0.046 (2)

−0.0054 (18) −0.005 (2) −0.005 (2) 0.007 (2) −0.0011 (19) 0.004 (2) 0.003 (2) 0.011 (2) 0.014 (2) −0.009 (2) −0.0023 (19) 0.000 (2) 0.025 (3) 0.018 (2) 0.002 (3) 0.004 (2) −0.002 (2) −0.015 (3) −0.006 (3) 0.001 (3) −0.012 (3) −0.009 (3) 0.004 (2) 0.004 (2) −0.004 (2) −0.0041 (19) 0.006 (2) 0.009 (2) 0.003 (3) 0.014 (3) 0.036 (3) 0.016 (2) 0.0227 (12) −0.0028 (7) 0.0210 (8) −0.0006 (11) 0.0236 (9) 0.0264 (9) 0.0193 (7) 0.0115 (6) 0.0158 (18) −0.010 (2) 0.0059 (18)

−0.001 (2) 0.006 (3) 0.010 (2) −0.009 (2) 0.002 (2) 0.000 (2) −0.003 (2) 0.003 (2) 0.016 (3) 0.012 (3) 0.000 (2) −0.008 (3) −0.012 (3) 0.005 (3) 0.004 (3) −0.008 (2) −0.003 (2) 0.005 (3) 0.005 (3) −0.008 (3) −0.001 (3) 0.006 (3) −0.001 (3) −0.012 (2) −0.007 (2) −0.009 (2) 0.009 (2) 0.001 (2) −0.003 (3) 0.024 (3) 0.004 (3) −0.008 (2) 0.0211 (15) 0.0051 (7) −0.0108 (11) −0.0345 (10) 0.0217 (8) 0.0176 (11) −0.0084 (7) −0.0026 (7) 0.0010 (19) 0.011 (2) −0.0172 (19)

0.005 (2) 0.009 (2) 0.005 (2) −0.004 (2) 0.007 (2) 0.003 (2) 0.005 (2) 0.004 (2) 0.014 (2) −0.004 (2) −0.006 (2) −0.016 (3) −0.020 (3) −0.009 (2) −0.011 (3) −0.008 (2) −0.012 (2) −0.012 (3) −0.010 (3) −0.011 (3) −0.010 (3) 0.004 (3) −0.008 (2) −0.009 (2) 0.012 (2) 0.009 (2) 0.005 (2) 0.006 (2) −0.002 (2) 0.001 (2) 0.006 (3) 0.004 (3) −0.0310 (10) 0.0125 (6) −0.0020 (7) −0.0287 (10) −0.0129 (9) 0.0112 (7) 0.0110 (6) −0.0138 (6) 0.0062 (16) −0.006 (2) 0.0064 (16)

Acta Cryst. (2014). E70, o861–o862

sup-6

supporting information O4

0.063 (2)

0.097 (3)

0.082 (3)

−0.016 (2)

−0.002 (2)

−0.028 (2)

Geometric parameters (Å, º) C1—C6 C1—C2 C1—C7 C2—C3 C2—H2 C3—C4 C3—H3 C4—C5 C4—Cl8 C5—C6 C5—H5 C6—H6 C7—O1 C7—C8 C8—C9 C8—Cl7 C9—C10 C9—Cl6 C10—O2 C10—C11 C11—C16 C11—C12 C12—C13 C12—H12 C13—C14 C13—H13 C14—C15 C14—Cl5 C15—C16 C15—H15 C16—H16

1.382 (6) 1.383 (7) 1.487 (6) 1.368 (7) 0.9300 1.365 (6) 0.9300 1.390 (7) 1.751 (5) 1.369 (7) 0.9300 0.9300 1.201 (5) 1.493 (6) 1.299 (7) 1.736 (5) 1.541 (8) 1.722 (5) 1.190 (6) 1.479 (7) 1.389 (7) 1.393 (7) 1.369 (8) 0.9300 1.375 (7) 0.9300 1.366 (8) 1.744 (6) 1.369 (8) 0.9300 0.9300

C17—C18 C17—C22 C17—C23 C18—C19 C18—H18 C19—C20 C19—H19 C20—C21 C20—Cl4 C21—C22 C21—H21 C22—H22 C23—O4 C23—C24 C24—C25 C24—Cl3 C25—C26 C25—Cl2 C26—O3 C26—C27 C27—C28 C27—C32 C28—C29 C28—H28 C29—C30 C29—H29 C30—C31 C30—Cl1 C31—C32 C31—H31 C32—H32

1.382 (7) 1.386 (7) 1.468 (7) 1.359 (8) 0.9300 1.372 (8) 0.9300 1.377 (8) 1.738 (6) 1.374 (8) 0.9300 0.9300 1.216 (6) 1.508 (7) 1.322 (7) 1.722 (5) 1.514 (6) 1.735 (5) 1.220 (6) 1.507 (7) 1.373 (7) 1.390 (6) 1.371 (7) 0.9300 1.348 (7) 0.9300 1.377 (9) 1.733 (6) 1.367 (8) 0.9300 0.9300

C6—C1—C2 C6—C1—C7 C2—C1—C7 C3—C2—C1 C3—C2—H2 C1—C2—H2 C4—C3—C2 C4—C3—H3 C2—C3—H3 C3—C4—C5 C3—C4—Cl8 C5—C4—Cl8

119.1 (4) 116.6 (4) 124.3 (4) 121.0 (4) 119.5 119.5 119.0 (5) 120.5 120.5 121.4 (4) 120.1 (4) 118.5 (4)

C18—C17—C22 C18—C17—C23 C22—C17—C23 C19—C18—C17 C19—C18—H18 C17—C18—H18 C18—C19—C20 C18—C19—H19 C20—C19—H19 C19—C20—C21 C19—C20—Cl4 C21—C20—Cl4

118.0 (5) 119.9 (5) 122.1 (5) 121.9 (5) 119.1 119.1 119.2 (6) 120.4 120.4 120.8 (5) 120.3 (5) 118.9 (5)

Acta Cryst. (2014). E70, o861–o862

sup-7

supporting information C6—C5—C4 C6—C5—H5 C4—C5—H5 C5—C6—C1 C5—C6—H6 C1—C6—H6 O1—C7—C1 O1—C7—C8 C1—C7—C8 C9—C8—C7 C9—C8—Cl7 C7—C8—Cl7 C8—C9—C10 C8—C9—Cl6 C10—C9—Cl6 O2—C10—C11 O2—C10—C9 C11—C10—C9 C16—C11—C12 C16—C11—C10 C12—C11—C10 C13—C12—C11 C13—C12—H12 C11—C12—H12 C12—C13—C14 C12—C13—H13 C14—C13—H13 C15—C14—C13 C15—C14—Cl5 C13—C14—Cl5 C14—C15—C16 C14—C15—H15 C16—C15—H15 C15—C16—C11 C15—C16—H16 C11—C16—H16

118.8 (4) 120.6 120.6 120.6 (4) 119.7 119.7 122.0 (4) 117.4 (4) 120.6 (4) 120.3 (4) 120.4 (4) 119.3 (4) 125.1 (4) 124.1 (4) 110.7 (4) 123.6 (5) 119.5 (5) 116.8 (4) 118.9 (5) 122.7 (5) 118.4 (4) 121.4 (5) 119.3 119.3 118.0 (5) 121.0 121.0 122.0 (5) 119.8 (4) 118.2 (4) 119.9 (5) 120.0 120.0 119.8 (5) 120.1 120.1

C22—C21—C20 C22—C21—H21 C20—C21—H21 C21—C22—C17 C21—C22—H22 C17—C22—H22 O4—C23—C17 O4—C23—C24 C17—C23—C24 C25—C24—C23 C25—C24—Cl3 C23—C24—Cl3 C24—C25—C26 C24—C25—Cl2 C26—C25—Cl2 O3—C26—C27 O3—C26—C25 C27—C26—C25 C28—C27—C32 C28—C27—C26 C32—C27—C26 C29—C28—C27 C29—C28—H28 C27—C28—H28 C30—C29—C28 C30—C29—H29 C28—C29—H29 C29—C30—C31 C29—C30—Cl1 C31—C30—Cl1 C32—C31—C30 C32—C31—H31 C30—C31—H31 C31—C32—C27 C31—C32—H32 C27—C32—H32

119.3 (5) 120.4 120.4 120.8 (5) 119.6 119.6 123.4 (5) 117.8 (5) 118.6 (4) 127.1 (4) 121.6 (4) 111.3 (3) 120.1 (4) 122.5 (4) 117.1 (4) 121.3 (4) 116.9 (4) 121.8 (4) 118.8 (5) 124.4 (4) 116.6 (4) 120.4 (4) 119.8 119.8 119.9 (5) 120.1 120.1 121.4 (5) 119.5 (5) 119.1 (4) 118.8 (5) 120.6 120.6 120.6 (5) 119.7 119.7

C6—C1—C2—C3 C7—C1—C2—C3 C1—C2—C3—C4 C2—C3—C4—C5 C2—C3—C4—Cl8 C3—C4—C5—C6 Cl8—C4—C5—C6 C4—C5—C6—C1 C2—C1—C6—C5 C7—C1—C6—C5 C6—C1—C7—O1

0.1 (7) 177.8 (4) 2.8 (8) −3.6 (7) 176.9 (4) 1.3 (7) −179.2 (3) 1.7 (7) −2.4 (7) 179.8 (4) 30.1 (7)

C22—C17—C18—C19 C23—C17—C18—C19 C17—C18—C19—C20 C18—C19—C20—C21 C18—C19—C20—Cl4 C19—C20—C21—C22 Cl4—C20—C21—C22 C20—C21—C22—C17 C18—C17—C22—C21 C23—C17—C22—C21 C18—C17—C23—O4

0.4 (9) −177.5 (5) 0.4 (9) −1.0 (9) 178.5 (5) 0.8 (9) −178.7 (4) 0.0 (8) −0.6 (8) 177.3 (5) 9.3 (8)

Acta Cryst. (2014). E70, o861–o862

sup-8

supporting information C2—C1—C7—O1 C6—C1—C7—C8 C2—C1—C7—C8 O1—C7—C8—C9 C1—C7—C8—C9 O1—C7—C8—Cl7 C1—C7—C8—Cl7 C7—C8—C9—C10 Cl7—C8—C9—C10 C7—C8—C9—Cl6 Cl7—C8—C9—Cl6 C8—C9—C10—O2 Cl6—C9—C10—O2 C8—C9—C10—C11 Cl6—C9—C10—C11 O2—C10—C11—C16 C9—C10—C11—C16 O2—C10—C11—C12 C9—C10—C11—C12 C16—C11—C12—C13 C10—C11—C12—C13 C11—C12—C13—C14 C12—C13—C14—C15 C12—C13—C14—Cl5 C13—C14—C15—C16 Cl5—C14—C15—C16 C14—C15—C16—C11 C12—C11—C16—C15 C10—C11—C16—C15

−147.6 (5) −151.7 (4) 30.5 (7) 24.3 (7) −153.9 (5) −153.0 (4) 28.8 (6) 4.4 (8) −178.3 (4) −178.6 (4) −1.3 (7) 80.1 (7) −97.3 (5) −103.2 (6) 79.5 (5) −173.1 (5) 10.3 (6) 3.9 (7) −172.7 (4) 1.0 (7) −176.1 (5) −0.4 (8) −1.2 (8) 177.7 (4) 2.2 (9) −176.7 (4) −1.5 (8) 0.0 (7) 177.0 (5)

C22—C17—C23—O4 C18—C17—C23—C24 C22—C17—C23—C24 O4—C23—C24—C25 C17—C23—C24—C25 O4—C23—C24—Cl3 C17—C23—C24—Cl3 C23—C24—C25—C26 Cl3—C24—C25—C26 C23—C24—C25—Cl2 Cl3—C24—C25—Cl2 C24—C25—C26—O3 Cl2—C25—C26—O3 C24—C25—C26—C27 Cl2—C25—C26—C27 O3—C26—C27—C28 C25—C26—C27—C28 O3—C26—C27—C32 C25—C26—C27—C32 C32—C27—C28—C29 C26—C27—C28—C29 C27—C28—C29—C30 C28—C29—C30—C31 C28—C29—C30—Cl1 C29—C30—C31—C32 Cl1—C30—C31—C32 C30—C31—C32—C27 C28—C27—C32—C31 C26—C27—C32—C31

−168.5 (5) −165.2 (5) 17.0 (7) 84.3 (7) −100.9 (6) −93.7 (5) 81.1 (5) 5.1 (8) −177.1 (3) 179.9 (4) −2.3 (6) 26.5 (7) −148.6 (4) −152.6 (5) 32.3 (5) −152.0 (5) 27.0 (7) 23.5 (7) −157.5 (4) −1.2 (7) 174.2 (4) 2.3 (8) −1.7 (9) 178.0 (4) 0.1 (9) −179.6 (5) 1.0 (9) −0.5 (8) −176.3 (5)

Hydrogen-bond geometry (Å, º) D—H···A

D—H

H···A

D···A

D—H···A

C2—H2···Cl7 C28—H28···Cl2 C3—H3···O1i C5—H5···O3ii C6—H6···O3ii C13—H13···O2iii C29—H29···Cl8iv

0.93 0.93 0.93 0.93 0.93 0.93 0.93

2.74 2.72 2.55 2.75 2.91 2.45 2.81

3.160 (5) 3.191 (5) 3.290 (6) 3.418 (6) 3.502 (6) 3.302 (7) 3.645 (5)

109 112 137 129 122 152 149

Symmetry codes: (i) −x+1/2, y, z−1/2; (ii) x, y−1/2, z−1/2; (iii) −x+1/2, y, z+1/2; (iv) x, y+1/2, z+3/2.

Acta Cryst. (2014). E70, o861–o862

sup-9

Copyright of Acta Crystallographica: Section E (International Union of Crystallography IUCr) is the property of International Union of Crystallography - IUCr and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.

(Z)-2,3-Di-chloro-1,4-bis-(4-chloro-phen-yl)but-2-ene-1,4-dione. - PDF Download Free (2024)

References

Top Articles
Latest Posts
Recommended Articles
Article information

Author: Aracelis Kilback

Last Updated:

Views: 5724

Rating: 4.3 / 5 (64 voted)

Reviews: 95% of readers found this page helpful

Author information

Name: Aracelis Kilback

Birthday: 1994-11-22

Address: Apt. 895 30151 Green Plain, Lake Mariela, RI 98141

Phone: +5992291857476

Job: Legal Officer

Hobby: LARPing, role-playing games, Slacklining, Reading, Inline skating, Brazilian jiu-jitsu, Dance

Introduction: My name is Aracelis Kilback, I am a nice, gentle, agreeable, joyous, attractive, combative, gifted person who loves writing and wants to share my knowledge and understanding with you.